
1

Supplementary Methods

Kronecker regularized least-squares method

Here, we describe in detail an algorithm that we refer to as the Kronecker regularized least-squares

(KronRLS; Pahikkala 2010; 2013). First, we briefly describe the ordinary RLS method (Poggio and

Smale, 2003), also known as the kernel ridge regression (Saunders et al., 1998) or the least-squares

support vector machine (Suykens et al., 2002). KronRLS is a special case of the ordinary RLS

method (Pahikkala et al. 2012).

Let Ξ be the space of inputs, which can, in practice, be any set of arbitrary type of objects, and let

X be a set of m inputs drawn from Ξ according to some unknown probability distribution.

Further, we assume that each input xi is assigned a real-valued label *

i i iy f x e , where f
*
 is an

unknown function and ei is a noise term that is independent of xi. Following the standard notations

for kernel learning methods, we formulate the problem of learning a prediction function

from the labeled training set as finding a minimizer of the following objective function involving a

training error and penalty terms:

22

1

() (())
m

i i k
i

J f y f x f

 ,

where
k

f is the norm of f measured in the Hilbert space associated to the kernel function k, and

λ>0 is the user-provided regularization hyper-parameter used to determine a compromise between

the prediction error on the training set and the model complexity. Due to the well-known

representer theorem (Kimeldorf and Wahba, 1971), a minimizer of the above objective function can

be expressed as

1

() (,)
m

i i

i

f x a k x x

 , (1)

where k is the above mentioned kernel that can be considered as a symmetric similarity measure

between two data points. The parameters ai that define the minimizer can, in turn, be found via

solving the following system of linear equations:

 K I a y ,

2

where a and y are both m-dimensional vectors consisting of the parameters ai and labels yi,

respectively, K is a m×m matrix containing all pairwise evaluations of k for the training data, and I

is the m×m identity matrix.

KronRLS is a special case of the ordinary RLS in which one assumes the training data to have a

special structure. Namely, one assumes that each datum consists of two distinct parts, which in this

paper refer to a drug and a target. The real-valued label of the drug-target pair indicates the

interaction affinity between a drug and its potential cellular target. We further assume that both the

drugs and targets have their own kernel functions, kd and kt, and that the kernel for the composite

data is the product of the two kernels, that is, the kernel evaluation between the data points

x1=(d1,t1) and x2=(d2,t2) is given as k(x1, x2) = kd(d1,d2) kt(t1,t2). This particular choice of a composite

kernel function has certain benefits. In Waegeman et al. (2012), we have proven that if the kernel

functions kd and kt are universal, then the Kronecker product kernel k is also universal. The

universality of a kernel (Steinwart, 2001) over a space of inputs Ξ indicates that the weighed linear

combinations of type (1) can approximate any continuous real-valued function over Ξ arbitrarily

closely provided that we are given a large and representative enough training set, that is, for any

continuous function , there exists a finite set of data points and their coefficients ai, such

that the function f converges to f
*
 uniformly over Ξ. In contrast, if one used an alternative type of a

composite kernel, say, the sum of kd and kt instead of their product, we would be unable to learn

certain functions nonlinear in the two inputs, as we will discuss below in more detail.

In the present application, the training set for KronRLS consists of a set X of drug-target pairs and a

vector y consisting of their real-valued labels (quantitative interaction affinities). Let D and T

denote, respectively, the sets of drugs and targets encountered in the training set, that is, a drug d

belongs to D if and only if X contains at least one drug-target pair xi=(di,ti) for which d=di, and the

set T goes analogously. For simplicity, we assume that X can only contain a single instance of each

drug-target pair, and thus X D T . Moreover, let Kd and Kt denote, respectively, the kernel

matrices consisting of all kernel evaluations between the drugs and targets encountered in the

training set. The Kronecker product of the two kernel matrices, namely d t K K K then contains

all kernel evaluations between the drug-target pairs in D T .

Let us assume first that the training set X D T contains every possible pair of drugs and targets

encountered in the training set. To train a model we have to solve a system of D T linear

3

equations, which is often computationally cumbersome. However, using Kronecker algebraic

optimization, the model can be equivalently obtained from the following closed form. Let

T

d K VΛV be the eigen-decomposition of the kernel matrix Kd, with V being an orthogonal

matrix consisting the eigenvectors and Λ a diagonal matrix containing the eigenvalues of Kd, and let

T

t K UΣU be the corresponding eigen decomposition of Kt. Then, the vector a of model

parameters can be obtained from:

vec()Ta UCV

where vec is the so-called vectorization operator that stacks the columns of a matrix into a vector, C

is a matrix for which it holds that

 1vec () vec()T T C Λ Σ I U Y V ,

and | | | | is the label matrix, whose rows and columns are indexed by drugs and targets,

respectively. This form completely avoids the computation of the large Kronecker product matrix,

which considerably accelerates the training process. This type of computational short-cuts have a

long history in matrix analysis (see e.g. Van Loan, 2000).

If we do not know the labels of every drug-target pair in D T , the above Kronecker algebraic

short-cut does not work as such. Instead, one has to resort to alternative approaches for solving the

corresponding system of linear equations, such as conjugate gradient combined with Kronecker

algebraic optimization (see e.g. Kashima et al., 2009; Pahikkala et al., 2010, 2013). Some authors

have also used dummy label values in place of the missing ones so that the use of closed form

approach has subsequently been possible. This was done, for example, by Van Laarhoven et al.

(2012) in cross-validation experiments, where the binary class labels of the data in the set held out

for testing were replaced with zero values indicating no interaction and the learning process was

repeated from scratch for the modified label matrix. Here, we again resort to matrix algebraic

optimization approaches for cross-validation, similar to those introduced by some of the present

authors (Pahikkala et al., 2012), and “unlearn” some of the data from the model.

Evaluation procedure

The results in the Yamanishi et al. (2008) data sets are based on a binary classification formulation,

where true drug-target interactions belong to the positive and non-interactions to the negative class.

In contrast, Davis et al. (2011) and Metz et al. (2011) data have quantitative labels (Kd and Ki

values, respectively). We performed on quantitative data sets both regression experiments, where

4

the aim is to predict the ranks of the quantitative values, as well as binary classification

experiments, where the data are first divided into an interacting and non-interacting classes based

on a cutoff value. In the regression experiments, we evaluated the rank prediction performance

using the concordance index (CI), whereas the binary classification experiments are based both on

the area under ROC curve (AUC) and area under precision-recall curve (AUC-PR) results.

With cross-validation (CV), we refer to the family of methods in which one repeatedly draws from

the whole data mutually disjoint training and test sets and the prediction performances of the

models trained with the training sets are evaluated on the corresponding test sets. There are two

ways to compute CV performance for multivariate performance measures such as CI, AUC and

AUC-PR: (1) pooling, where the performance is computed globally over the union of all the test

sets, and (2) averaging, where performance is computed for every test set separately, with result

being the average of these (Bradley et al. 1997; Airola et al. 2011). In our main experiments

reported in the paper, we follow the averaging approach, since pooling has previously been shown

sometimes to lead to systematically biased results, especially when used with the AUC performance

measure (Parker et al., 2007; Airola et al., 2011).

Supplementary Tables 1-17 report the full experimental results for the Davis et al. (2011),

Yamanishi et al. (2008) and the Metz et al. (2011) datasets, using both averaging and pooling

approaches, as well as in terms of CI, AUC and AUC-PR performance measures.

Random forest

We further performed experiments with the random forests method (Breiman, 2001). Specifically,

we tested whether the main differences observed with Kronecker RLS across the four settings, as

well as between the binary classification and rank prediction formulations generalized also to this

machine learning method. Random forests have been previously applied to drug-target prediction

by Yu et al. (2012); here, we used the same feature representation in which each drug-target pair is

represented as a concatenation of drug- and target similarity vectors formed using the structural

similarities and normalized Smith-Waterman sequence similarities, respectively. We made use of

the Python implementation in the sklearn machine learning package (http://scikit-learn.org/). The

binary classification AUC results are based on class probabilities output by the random forest

classifier, while the concordance index results are obtained by training random forest regression

models. In the evaluation, we applied nested 5-fold CV in the settings 1-3, and nested 3×3 CV in

the setting 4. The inner cross-validation was used to select the number of trees; other parameters

5

were set to their default values, for instance, the number of features to consider when looking for

the best split: square root of the number of features (classification), number of features (regression);

split criterion: Gini impurity (classification), mean squared error (regression); for details, see

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html;

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html.

Supplementary Tables 2, 4,6 and 11,13,15 contain the full random forest results in two technical

replicates to investigate the level of variation in the perdition accuracies between the runs.

References

Airola, A. et al. (2011) An experimental comparison of cross-validation techniques for estimating

the area under the ROC curve. Comput Stat Data Analysis 55, 1828–1844.

Bradley, A.P. (1997) The use of the area under the ROC curve in the evaluation of machine learning

algorithms. Pattern Recognition 30, 1145–1159.

Breiman, L. (2001) Random Forests. Machine Learning 45, 5–32.

Davis, M.I. et al. (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol.,

29, 1046–1051.

Gönen, M. and Heller, G. (2005) Concordance probability and discriminatory power in proportional

hazards regression. Biometrika, 92, 965-970.

Herbrich, R. et al. (2000) Large Margin Rank Boundaries for Ordinal Regression. In: Advances in

Large Margin Classifiers, Cambridge, MA, MIT Press, 115-132

Kashima, H. et al. (2009) Link propagation: A fast semi-supervised learning algorithm for link

prediction. In: Proceedings of the SIAM International Conference on Data Mining, SIAM,

1099-1110.

Kimeldorf, G. and Wahba, G. (1971) Some results on Tchebycheffian spline functions. Journal of

Mathematical Analysis and Applications, 33, 82-95.

Metz, JT. et al. (2011) Navigating the kinome. Nat. Chem. Biol. 2011, 7, 200-202.

Pahikkala, T. et al. (2010) Conditional ranking on relational data. In: Balcazar et al. editors,

Proceedings of the European Conference on Machine Learning and Knowledge Discovery in

Databases, Part II, Springer, Lecture Notes in Computer Science, 6322, 499-514.

Pahikkala, T. et al. (2012) Efficient cross-validation for kernelized least-squares regression with

sparse basis expansions. Machine Learning, 87, 381-407.

6

Pahikkala, T.et al. (2013) Efficient regularized least-squares algorithms for conditional ranking on

relational data. Machine Learning, 93, 321-356.

Parker BJ, Günter S, Bedo J. (2007) Stratification bias in low signal microarray studies. BMC

Bioinformatics, 8, 326.

Poggio, T. and Smale, S. (2003) The mathematics of learning: dealing with data. Notices of the

American Mathematical Society, 50, 536-544.

Saunders, C. et al. (1998) Ridge regression learning algorithm in dual variables. In: Shavlik, J.

editor, Proceedings of the 15th International Conference on Machine Learning, Morgan

Kaufmann Publishers Inc., 515-521.

Steinwart. I. (2002) On the influence of the kernel on the consi stency of support vector machines.

Journal of Machine Learning Research, 2, 67-93.

Suykens J. et al. (2002) Least Squares Support Vector Machines. World Scientific Pub. Co.,

Singapore.

Van Laarhoven, T. et al. (2011) Gaussian interaction profile kernels for predicting drug-target

interaction. Bioinformatics, 27, 3036-3043.

Van Loan, C. (2000) The ubiquitous kronecker product. Journal of Computational and Applied

Mathematics, 123, 85-100.

Waegeman, W. et al. (2012) A kernel-based framework for learning graded relations from data.

IEEE Transactions on Fuzzy Systems, 20, 1090-1101.

Yamanishi,Y. et al. (2008). Prediction of drug–target interaction networks from the integration of

chemical and genomic spaces. Bioinformatics, 24, i232–i240.

Yu H. et al. (2012). A systematic prediction of multiple drug-target interactions from chemical,

genomic, and pharmacological data. PLoS ONE, 7, e37608.

